POLI30: Inference

Week 2: Variables & Measurement

Scott Desposato D. Alex Hughes

September 29, 2011
Contact Information

D. Alex Hughes
Office: SSB 349
Email: dhughes@ucsd.edu
TA Website: http://polisci2.ucsd.edu/dhughes

Office Hours: Tentatively Thursday 12:00pm - 1:50pm
Clarifying a Concept

To be valid, or even useful, a concept must be two things:

▶ **Concrete** – Must be built of things that we can put our analytic “hands” on.

▶ **Variable** – Do some people have more of the concept, and others less?

Should we define one concept in terms of another concept?
Conceptual Definition

- After identifying the concrete, measurable attributes, we need to **define** how, and for whom those attributes describe a concept.
- The concept of [concept’s label] is defined as the extent to which [the unit of analysis] exhibit the characteristic of [concept’s measurement]
Operational Definition

- Translation of an idea or a construct into something real, concrete, and measurable
- It describes explicitly how the concept is to be measured empirically
- A theory of measurement
Measurement Error

- Distortions of the linkage between a concept and its empirical measure
- Two types of measurement error:
 - **Systematic Measurement Error** – consistent, chronic distortion of an empirical measurement
 - **Random Measurement Error** – distortion caused by any factors that randomly affect measurement of the variable across the sample
Reliability and Validity

- **Reliability** – the extent to which it is a consistent measure of a concept

- **Validity** – the extent to which it records the true value of the intended characteristic and does not measure any unintended characteristics
Variables

“A Variable is an empirical measurement of a characteristic.” (Tetlock, p. 26).

More precisely, a variable is an object that holds the empirical measurements of a characteristic.

So, what are some variables?

- Age of Students in Class
- Greek Society Membership
- Orange-ness of Snookie
Levels of Measurement

There are four levels of measurement.

- Nominal
- Ordinal
- Interval
- Ratio
Nominal Variables

- Communicate Differences between Units Being Compared
- No Order to the Variables
- “Binning”

Examples of Nominal Variables

- Fruit
- Marriage Status
- Greek Status
- Sexual Orientation
- Gender in Mad Men
Ordinal Variables

- Communicate Differences between Units Being Compared
- Order to the Comparison – One Bin is Larger than another Bin
- However, either the size of the differences between bins is unknown, or it varies.

Examples of Ordinal Variables

- Nutrition of Fast Food
- Number of Towns North of La Jolla
- Skeezyness of Dude at Bar
- Hella, Hecka, Grip
- Job Title in Mad Men
Interval Variables

- Communicate Differences between Units Being Compared
- Order to the Comparison
- Size of difference between Units is known & constant

Examples of Interval Variables
- Grade in School
- Happiness Index
- Score on Election Fraud Index
- ? in Mad Men
Ratio Variables

- Interval Variables, but with a *meaningful Zero*
- “Does it make sense to compare this to Zero?”
- Could I divide this by a number or another variable, and would it still make sense?

Examples of Ratio Level Variables

- Age
- Miles from School
- Number of Whiskeys in Mad Men
Central Tendency

There are three measures of central tendency we will use. Each have different strengths and weaknesses, and summarize different amounts of data.

- **Mode** – What is the most frequently occurring variable level?
- **Median** – When arranging a variable according to its levels, what value falls in the middle?
- **Mean** – The average. When summing the all the values of a variable, and dividing by the number of entries, what is the value?
Which to Use?

The level of measurement dictates which measure of central tendency you may use

- **Nominal** – Mode
- **Ordinal** – Mode, Median
- **Interval** – Mode, Median, Mean
- **Ratio** – Median, Mean
Dispersion

- How *spread out* around the central moment is the data?
- Does it seem to be evenly spread out around the central moment?
- **Positive Skew** – The distribution has a longer/skinnier right-hand tail.
- **Negative Skew** – The distribution has a longer/skinnier left-hand tail.