Week 4: Theories, Hypothesis framing and Testing

D. Alex Hughes, dhughes@ucsd.edu

October 13, 2011
Bummer Dude.

Make an appropriate graphical representation of each of these. You have 3 minutes.

Colors: \{Red, Red, Red, Red, Blue, Blue, Green\}

Ages: \{16, 16, 17, 18, 22, 40, 51, 52, 53\}
Theories

- A **Theory** is a broad statement about how, and why the world works in a specific way.

- A **Hypothesis** is an empirically testable statement that derives from (is logically entailed by) a theory.
Theories

- A **Theory** is a broad statement about how, and why the world works in a specific way.

- A **Hypothesis** is an empirically testable statement that derives from (is logically entailed by) a theory.
 - Think about this in terms of Evolutionary Theory, or the Big Bang Theory.
 - Scientists do not *directly* test theories, but rather they test the Hypotheses that are entailed by their theories.
 - Theorizing, rather than getting stoned and talking about “*It’s like Maaaaaarx said bro...*” is a rigorous task.
Briefly, Independent and Dependent Variables

We want to know what is causing “things”, right?

- “Things” are the **Dependent Variable**
 - Voting
 - Grades
 - School Admissions

- The factors that cause “things” are the **Independent Variable**
 - Education, Income, Gender, Race
 - Study Habits, Income, Gender, Race, Tutoring
 - Grades, Test Scores
Three Steps to Theorizing

1. Identify the effect we want to explain. What Variable (DV) do I want to understand?

2. Identify the possible factors (IVs) that could be causing changes in the Variable I am interested in.

3. What is the logical connection between the two sets?
A Formal Hypothesis

A hypothesis is a conditional statement that declares what we should find in our data if our theory is correct.

- Form of a conditional statement: If \{\ldots\}, then \{\ldots\}.
- \(X \rightarrow Y\)
A Formal Hypothesis

A hypothesis is a conditional statement that declares what we should find in our data if our theory is correct.

- Form of a conditional statement: If \{\ldots\}, then \{\ldots\}.
- \(X \rightarrow Y\)
- If an election is fair, then no more that 20% of ballots cast will be time stamped after 5:00pm local time.
- If someone has more education, then she is more likely to be politically active.
- If the Detroit Lions win another game this season, then a miracle has occurred.
A Little Logic

This form of a conditional statement is a statement of implication. It holds that the presence of X implies the presence of Y.

- 5th year with surfboard \rightarrow stoner
- Fixed Gear bicycle \rightarrow hipster
- Drakar Noir and St...St...Stunner Shades \rightarrow Frat Boys

Note that Frat boys, hipsters, and losers all may be present without cheap cologne, leg shredders, and scent of desperation.

Note the direction of the implication arrow.
A Little Logic

To disprove a conditional statement of the above form, it is not sufficient to show the absence of both X and Y. The presence of X must be shown with the absence of Y.

- 5th year with surfboard \rightarrow Teaching homeless to surf
- Fixed Gear bicycle \rightarrow Olympic qualifying sprint cyclist
To disprove a conditional statement of the above form, it is not sufficient to show the absence of both X and Y. The presence of X must be shown with the absence of Y.

- 5th year with surfboard \rightarrow Teaching homeless to surf
- Fixed Gear bicycle \rightarrow Olympic qualifying sprint cyclist
- Drakar Noir and Stunner Shades \rightarrow ... Frat Boys
Political Science Examples

▶ **Democratic Peace**: Because democracy fosters a brotherhood of empowerment and mutual respect: In the case the two democratic countries have a dispute, it is less likely to develop into militarized conflict.

▶ What are the Independent and Dependent Variables here?
Political Science Examples

- **Democratic Peace**: Because democracy fosters a brotherhood of empowerment and mutual respect: In the case the two democratic countries have a dispute, it is less likely to develop into militarized conflict.

- H_0: Likelihood that two democratic countries are at war with each other is the same as any two randomly sampled dyads.

- H_A: Likelihood that two democratic countries are at war with each other is **NOT** the same as any two randomly sampled dyads.

- **What are the Independent and Dependent Variables here?**
Coin Toss for Buying Beer

- H₀: Alex has a fair coin. P(H) = P(T) = 0.5
- Hₐ: Alex is a cheapskate, will cheat his friends, and has a loaded coin. P(H) ≠ P(T).

Alex flips heads and the other TAs buy him beers 6 times in a row.
Coin Toss for Buying Beer

- H_0: Alex has a fair coin. $P(H) = P(T) = 0.5$
- H_A: Alex is a cheapskate, will cheat his friends, and has a loaded coin. $P(H) \neq P(T)$.

Alex flips heads and the other TAs buy him beers 6 times in a row.

- $P(H) = 0.5$
- $P(H, H) = (0.5)(0.5) = (0.5)^2$
- $P(H, H, H, H, H, H) = (0.5)^6 = 0.0156$
Example on Board.
Causality

1. Temporal Precedence
2. Empirical Correllational Pattern
3. Causal Theory
4. No other plausible causes – omitted variables, intervening variables.

These are necessary conditions, but are by NO means sufficient to establish convincing causality in all cases.